
An extension of the dynamics of one-dimensional wave splitting to three dimensions via

Clifford algebra

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2004 J. Phys. A: Math. Gen. 37 6741

(http://iopscience.iop.org/0305-4470/37/26/010)

Download details:

IP Address: 171.66.16.91

The article was downloaded on 02/06/2010 at 18:20

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/37/26
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 37 (2004) 6741–6749 PII: S0305-4470(04)73939-6

An extension of the dynamics of one-dimensional wave
splitting to three dimensions via Clifford algebra

R L Ochs Jr

Department of Mathematics, The University of Toledo, Toledo, OH 43606, USA

Received 6 January 2004, in final form 12 March 2004
Published 16 June 2004
Online at stacks.iop.org/JPhysA/37/6741
doi:10.1088/0305-4470/37/26/010

Abstract
The dynamics of split fields in one dimension are extended to three dimensions
using Clifford algebra. The solutions of the resulting equations provide a
unique insight into wave splitting and allow the construction of wave splittings
in three dimensions that may be useful in solving the three-dimensional inverse
scattering problem in the time domain.

PACS numbers: 02.10.Ud, 02.30.Zz

1. Introduction

Consider the one-dimensional wave equation

∂2u

∂x2
− c−2(x)

∂2u

∂t2
= 0 (1)

describing the propagation of scalar waves in a stratified medium characterized by a variable
wave speed c = c(x). Kristensson and Krueger [1] define a wave splitting for a function u
satisfying equation (1) by

u±(x, t) = 1

2

[
u(x, t) ∓ c(x)

∫ t

−∞

∂u

∂x
(x, s) ds

]
. (2)

It is easy to verify that if c is constant and

u(x, t) = f (x − ct) + g(x + ct)

is the general solution of (l), then

u+(x, t) = f (x − ct) and u−(x, t) = g(x + ct).

Moreover, this splitting defines a factorization of the wave equation (1) for constant c which
is conveniently expressed in matrix notation by

1

c

∂

∂t

[
u+(x, t)

u−(x, t)

]
+

[
1 0
0 −1

]
∂

∂x

[
u+(x, t)

x−(x, t)

]
=

[
0

0

]
. (3)
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If c is not constant in x, then u± as defined in equation (2) do not satisfy the wave equation.
The wave splitting in this case provides a partial factorization of the wave equation in the sense
that the first-order partial differential equations satisfied by u+ and u− are coupled. These
first-order equations can be written in matrix notation as

1

c

∂

∂t

[
u+(x, t)

u−(x, t)

]
+

[
1 0
0 −1

]
∂

∂x

[
u+(x, t)

x−(x, t)

]
= 1

2c

dc

dx

[
1 −1
1 −1

] [
u+(x, t)

x−(x, t)

]
c = c(x)

(4)

known in the time-domain scattering literature as the dynamics. The dynamics provide much
useful information about the directionality of wave propagation in the one-dimensional case;
they can be used as the foundation for methods of study of scattering problems in layered
media [2] by allowing the scattering system to be viewed as a system of inputs and outputs.

Much of the present work in time-domain scattering theory is devoted to extending these
methods which work so well in one dimension to scattering problems where waves propagate
in a medium characterized by a wave speed c which is a function of three spatial coordinates,
say x1, x2 and x3.

It is well-known in the physics literature [3] that Clifford algebras provide a method for the
factorization of the wave equation in three dimensions. Dirac’s equation for the electron was
derived by factoring the Klein–Gordon equation using a matrix representation of a Clifford
algebra. Of course, the Klein–Gordon equation reduces to the wave equation when the mass of
the particle goes to zero, and Dirac’s equation becomes the Weyl equations [4] for the neutrino
in the same limit.

One recognizes in equations (3) and (4) one of the Pauli spin matrices [5]

σ3 =
[

1 0
0 −1

]
which together with the identity matrix

I =
[

1 0
0 1

]
provide one of the simplest nontrivial examples of the matrix representation of the basis for a
Clifford algebra [3]. The thought of using the remaining two Pauli spin matrices

σ1 =
[

0 1
1 0

]
and σ2 =

[
0 −i
i 0

]
to extend equation (4) to three dimensions is irresistible.

In this paper, it is shown that equation (4) can indeed be extended to three dimensions
providing a partial factorization of the three-dimensional wave equation for nonhomogeneous
media. The resulting equations, which can be written in the form(

I
1

c(
⇀
r )

∂

∂t
+ ⇀

σ · ⇀∇
)

˜�(
⇀
r , t) = f (˜�) (5)

for Clifford algebra-valued field ˜�, where for
⇀
r = x1 î + x2ĵ + x3k̂

⇀
σ · ⇀

� = σ1
∂

∂x1
+ σ2

∂

∂x2
+ σ3

∂

∂x3

are analysed. It is shown that by solving equation (5) one is simultaneously solving the three-
dimensional wave equation and obtaining the direction of propagation, at least for singular
waves.
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2. The partial factorization of the three-dimensional wave equation

Rather than using a concrete representation such as the Pauli spin matrices, we let σ1, σ2, σ3

and I be any square matrices having the following properties:

σ 2
i = I σiσj + σjσi = 0 I 2 = I

and

σiI = Iσi = σi

for all i, j = 1, 2, 3, i �= j . The equations that result from this approach will be easier to
interpret geometrically. It can be shown that the matrices

I, σ1, σ2, σ3, σ2σ3, σ3σ1, σ1σ2, σ1σ2σ3

span an eight-dimensional, real vector space of matrices called a Clifford algebra [3]. Hence
we can write any element ˜� of this Clifford algebra in the form

˜� = u0I + u1σ1 + u2σ2 + u3σ3 + u23σ2σ3 + u31σ3σ1 + u12σ1σ2 + u123σ1σ2σ3.

If we let

u = u0 v = u123
⇀
u = u1 î + u2ĵ + u3k̂

⇀
v = u23 î + u31ĵ + u12k̂

and
⇀
σ = σ1 î + σ2ĵ + σ3k̂

then ˜� can be written more compactly as

˜� = uI +
⇀
u · ⇀

σ + σ1σ2σ3(vI + ⇀
v · ⇀

σ ).

We now suppose that ˜� is a Clifford algebra solution of the equation(
I

1

c0

∂

∂t
+ ⇀

σ · ⇀∇
)

˜�(
⇀
r , t) = ˜0 c0 = constant

where ˜0 is the zero element of the Clifford algebra and
⇀∇ is the usual gradient operator. Then

it is easy to show that u,
⇀
u, v and ⇀

v satisfy the equations

⇀∇ · ⇀
u = − 1

c0

∂u

∂t

⇀∇ · ⇀
v = − 1

c0

∂v

∂t

− 1

c0

∂
⇀
u

∂t
+

⇀∇ × ⇀
v = ⇀∇u

1

c0

∂
⇀
v

∂t
+

⇀∇ × ⇀
u = −⇀∇v.

We wish to extend these equations to the case of nonconstant c0.
Let c = c(

⇀
r ) be a function of position

⇀
r . We assume that u,

⇀
u, v and ⇀

v satisfy the
equations

1

c2

∂2u

∂t2
− �2u = 0 v = 0

−1

c

∂
⇀
u

∂t
+

⇀∇ × ⇀
v = ⇀∇u

1

c

∂
⇀
v

∂t
+

⇀∇ × ⇀
u = ⇀

0 .

Then it is easy to show that u,
⇀
u and ⇀

v are related by the following equations if all fields go
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to zero as time t goes to minus infinity:
⇀∇ ·

(
1

c

⇀
u

)
= − 1

c2

∂u

∂t
and

⇀∇ ·
(

1

c

⇀
v

)
= 0. (6a)

Together with the equations

−1

c

∂
⇀
u

∂t
+

⇀∇ × ⇀
v = ⇀∇u and

1

c

∂
⇀
v

∂t
+

⇀∇ × ⇀
u = ⇀

0 (6b)

we have four equations bearing a remarkable similarity to the Maxwell equations. This being
the case, we will on occasion call

⇀
u the electric field and ⇀

v the magnetic field corresponding to
the solution of the wave equation u. Equations (6b) can be written as a symmetric hyperbolic
system and consequently have a weak solution under suitable conditions on c [6].

Now it is straightforward to show that
⇀∇ satisfies the equation(

I
1

c

∂

∂t
+ ⇀

σ · ⇀∇
)

˜�(
⇀
r , t) =

⇀∇c

c
· (

⇀
u

⇀

I + ⇀
vσ1σ2σ3) (7)

corresponding to the extension of the partial factorization in equation (4) from the wave
equation in one dimension to the three-dimensional case. By the way, the vectors

⇀
u and ⇀

v

can be written in terms of ˜� by using the Clifford algebra inner product [3] yielding(
I

1

c

∂

∂t
+ ⇀

σ · ⇀∇
)

˜�(
⇀
r , t) =

〈
⇀
σ ·

⇀∇c

c
,˜�

〉
I +

〈
σ1σ2σ3

⇀
σ ·

⇀∇c

c
,˜�

〉
σ1σ2σ3

where 〈˜�,˜�〉 is the coefficient of I in the basis expansion of the Clifford number ˜�+˜� and ˜�+

is the Clifford number reverse [3] of ˜�.

3. Recovery of the one-dimensional splitting

In this section, we show that equation (7) reduces to the familiar dynamics of one-dimensional
wave propagation in a stratified medium. Let n̂ be a constant unit vector, and let ξ = n̂ · ⇀

r .
We assume that c = c(ξ) and ˜� = ˜�(ξ, t). Then from the first of equations (6a) and (6b) it
can be shown that

1

c

∂u

∂t
+ n̂ · ∂

⇀
u

∂ξ
= c′

c
n̂ · ⇀

u (8a)

1

c

∂

∂t
n̂ · ⇀

u +
∂u

∂ξ
= 0. (8b)

From equation (8b) we see that

n̂ · ⇀
u = −c

∫ t

−∞
uξ(ξ, s) ds

using a subscript ξ to denote partial differentiation with respect to ξ .
Now let u+ = 1

2 (u + n̂ · ⇀
u) and u− = 1

2 (u − n̂ · ⇀
u). Then by adding and subtracting

equations (8a) and (8b) one can show that
1

c

∂u+

∂t
+

∂u+

∂ξ
= c′

2c
(u+ − u−)

1

c

∂u−

∂t
− ∂u−

∂ξ
= c′

2c
(u+ − u−)

which are equivalent to equation (4) with ξ replacing x.
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Another way to derive the one-dimensional dynamics is to choose a representation of
σ1, σ2, σ3 and I so that the direction of propagation n̂ points in the x3-direction and σ3 is
diagonal. Hence, assuming that c = c(x3) and ˜� = ˜�(x3, t), we choose

σ1 =
[

0 1
1 0

]
σ2 =

[
0 −i
i 0

]
σ3 =

[
1 0
0 −1

]
and

I =
[

1 0
0 1

]
.

Then σ1σ2σ3 = iI and equation (7) reduces to(
I

1

c(x3)

∂

∂t
+ σ3

∂

∂x3

) [
u + u3 + iv3 u1 + v2 + i(v1 − u2)

u1 − v2 + i(v1 + u2) u − u3 − iv3

]
= c′

c
(u3 + iv3)I.

Choosing the real part of this equation and noting that I and σ3 are diagonal matrices we see
that (

I
1

c

∂

∂t
+ σ3

∂

∂x3

) [
u + u3

u − u3

]
= c′

c
u3

[
1
1

]
.

We now let u+ = 1
2 (u+u3) and u− = 1

2 (u−u3). This again yields equation (4) with x replaced
by x3.

4. Solutions of the dynamical equations for homogeneous media

In an effort to gain insight into the meaning of the components of ˜�, we consider a special

case. Consequently, suppose that the medium is homogeneous, so that c is a constant. Then
equations (6) become

⇀∇ · ⇀
u = −1

c

∂u

∂t

⇀∇ · ⇀
v = 0

−1

c

∂
⇀
u

∂t
+

⇀∇ × ⇀
v = ⇀∇u

1

c

∂
⇀
v

∂t
+

⇀∇ × ⇀
u = ⇀

0 .

It is now trivial to show that ⇀
v satisfies the wave equation

1

c2

∂2⇀
v

∂t2
− ∇2⇀

v = ⇀

0

implying that if ⇀
v = ⇀

0 everywhere as t → −∞ then ⇀
v ≡ ⇀

0 for all finite times. In this case,
the electric field due to u is easily determined to be

⇀
u(

⇀
r , t) = −c

⇀∇
∫ t

−∞
u(

⇀
r , s) ds

which is a solution of the wave equation.
If u is a plane wave propagating in the direction n̂ we can write

u = f (n̂ · ⇀
r − ct)

for some function f of compact support in R. Then
⇀
u = n̂u and u = n̂ · ⇀

u
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and we note that
⇀
u is parallel to the direction of propagation of u. Now suppose that u is a

spherical wave propagating outward (upper sign) or inward (lower sign) from the origin, i.e.

u = f (r ∓ ct)

r
.

Then, if r̂ is a unit vector in the radial direction away from the origin

⇀
u = ±r̂

(
u ± c

r

∫ t

−∞
u ds

)
which is a solution of the wave equation. However,

±r̂ · ⇀
u = u ± c

r

∫ +

−∞
u ds

is not a solution. Consequently, the splitting defined by u± = 1
2 [u± r̂ ·⇀u] is only approximate.

In both the cases, we see that the vector
⇀
u yields the direction of propagation of the wave

u. However, if one takes the scalar product of
⇀
u with the direction of propagation in order

to construct a splitting along the lines suggested by section 3, one arrives at a solution of the
wave equation only in the plane wave case. The difficulty is seen to lie in the fact that the
wave operator

1

c2

∂2

∂t2
− ∇2

commutes with the gradient operator
⇀∇ but not with the components of the gradient, except

in rectangular coordinates. Nevertheless, if the gradient vector is expressed in curvilinear
coordinates, then this yields a fruitful method of producing splittings that involve only local
operators [7] but that are approximate even in homogeneous media.

5. The magnetic field ⇀
v

We now determine the significance of the magnetic field ⇀
v . As we saw in the previous section,

if the medium is homogeneous, then ⇀
v can be set identically to zero for all time. Since closed-

form solutions of the wave equation in inhomogeneous media are limited in number, we must
appeal to asymptotic analysis. We will consider two approaches, a perturbation analysis for
a slowly varying medium and a propagation of singularities argument. Undoubtedly, other
forms of analysis will yield useful information.

Before engaging in this asymptotic analysis, we prove that if
⇀∇c × ⇀∇u �= ⇀

0 in a medium

of nonconstant c, then ⇀
v �≡ ⇀

0 . Consider equations (6a) and (6b) and assume that ⇀
v ≡ ⇀

0 .
Then u and

⇀
u satisfy the equations

⇀∇ ·
(

1

c

⇀
u

)
= − 1

c2

∂u

∂t
− ∂

∂t

(
1

c

⇀
u

)
= ⇀∇u and

⇀∇ × ⇀
u = ⇀

0 .

Integrating the second equation yields

⇀
u = −c

⇀∇
∫ t

−∞
u(

⇀
r , s) ds

which also satisfies the first equation, since u is a solution of the wave equation. However,
substituting into the third equation, we see that

⇀

0 = ⇀∇ × ⇀
u = −⇀∇ ×

(
c

⇀∇
∫ t

−∞
u ds

)
= −⇀∇c × ⇀∇

∫ t

−∞
u ds

= −
∫ t

−∞

⇀∇c × ⇀∇u ds.
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Hence, differentiating with respect to t
⇀∇c × ⇀∇u = ⇀

0

which concludes the proof. We see that, in a way analogous to gauge fields, if the medium
loses symmetry, then a new field must be introduced.

An asymptotic analysis allows us to determine a quantitative connection between
⇀∇c×⇀∇u

and ⇀
v . First we consider a slowly varying medium [8]. We assume that the speed of

propagation c is given by a power series expansion in a small parameter ε:

c = c(ε
⇀
r ) = c0 + ε

⇀
c 1 · ⇀

r + 0(ε2)

where
⇀
c 1 is a constant vector and 0(ε2) represents terms of order ε2 and higher.

We now suppose that u,
⇀
u and ⇀

v have analogous power series expansions in ε:

u = u0 + εu1 + 0(ε2)
⇀
u = ⇀

u0 + ε
⇀
u1 + 0(ε2)

⇀
v = ⇀

v 0 + ε
⇀
v 1 + 0(ε2).

Substitution of these expansions as well as the above expansion of c into equations (6a)
and (6b) and equating coefficients of like powers of ε yields

1

c2
0

∂2u0

∂t2
− ∇2u0 = 0

⇀
u0 = −c0

⇀∇
∫ t

−∞
u0(

⇀
r , s) ds

⇀
v 0 = ⇀

0

and

1

c2
0

∂2⇀
v 1

∂t2
− ∇2⇀

v 1 =
⇀
c 1

c0
× ⇀∇u0.

The first equation for u0 is to be expected since u is a solution of the wave equation.
Considerations similar to those of the previous section show that the electric field

⇀
u parallels

the direction of propagation of u, at least to lowest order in ε. From the third and the fourth
equations, we can conclude that the magnetic field ⇀

v is of first order in ε and satisfies a wave
equation with

⇀∇c × ⇀∇u0 as its source, to lowest order in ε, and is consistent with our earlier
result.

More revealing conclusions can be drawn by pursuing a propagation of singularity
analysis. We first recall familiar results about the wave equation [8]

1

c2

∂2u

∂t2
− ∇2u = 0.

Expand u as follows:

u =
∞∑

j=0

ujHj [φ]

where

Hj [x] = xj

j !
H(x)
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and H is the Heaviside function. Substitution of this expansion for u into the wave equation
yields the eikonal equation

φ2
t − c2|⇀∇φ|2 = 0

and the transport equations

2
∂u0

∂t
φt − 2c2⇀∇u0 · ⇀∇φ + u0(φtt − c2∇2φ) = 0

2
∂uj

∂t
φt − 2c2⇀∇uj · ⇀∇φ + uj (φtt − c2∇2φ) = −∂2uj−1

∂t2
+ c2∇2uj−1 j � 1.

Equations (6b) can be treated in the same way. We expand the vector fields
⇀
u and ⇀

v as

⇀
u =

∞∑
j=0

⇀
ujHj [φ] and ⇀

v =
∞∑

j=0

⇀
v jHj [φ].

Substitution into (6b) yields the eikonal equation for φ. It is convenient to write φ as

φ(x, y, z, t) = ψ(x, y, z) − t

so that all fields are progressive waves. Then the eikonal equation becomes

c2|⇀∇ψ |2 = 1.

Moreover, we generate the transport equations
⇀∇ψ × ⇀

u0 − 1

c

⇀
v 0 = ⇀

0

⇀∇ψ × ⇀
v 0 +

1

c

⇀
u0 = u0

⇀∇ψ

⇀∇ψ × ⇀
uj − 1

c

⇀
v j = −1

c

∂vj−1

∂t
− ⇀∇ × ⇀

uj−1 j � 1

and

⇀∇ψ × ⇀
v j +

1

c

⇀
uj = 1

c

∂
⇀
uj−1

∂t
− ⇀∇ × ⇀

v j−1 + uj

⇀∇ψ − ⇀∇uj−1 j � 1.

Considering only the most singular terms
⇀
u0 and ⇀

v 0, we see from the first of these equations

that the ray direction c
⇀∇ψ is perpendicular to the magnetic field ⇀

v 0, and the angle between
the ray direction and

⇀
u0 is easily calculated from the second equation. Hence, it is reasonable

to conclude that in solving equation (7) one is computing essential asymptotic information
about the direction of propagation of the wave field.

6. Conclusions

We have seen that it is possible to extend the dynamical equations of one-dimensional time-
domain scattering theory to three dimensions by use of Clifford algebra. The resulting
equations provide a unique insight into the dynamics of split fields since it appears that in
addition to an ‘electric’ field appearing in the one-dimensional case as the time integral of
the spatial derivative of the wave field, a further ‘magnetic’ field must be introduced in the
case of nonhomogeneous media, that is, when the symmetry of the homogeneous medium is
destroyed. However, the computation of both vector fields allows one to deduce the direction
of propagation of the wave field as in the one-dimensional case. Whether these observations
can be used to step through a medium systematically and solve the inverse problem remains
to be proved.
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